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Abstract

When a ~uid ~ows past an array of cylinders that represent the porous media\ the micro convection around the cylinders
will contribute to heat dispersion[ The modi_ed e}ective thermal conductivity tensor that includes the microscopic heat
dispersion e}ect is usually calculated by a volume averaging method[ This method requires a closure constitutive vector
b to simulate the modi_ed e}ective thermal conductivity tensor[ In this paper\ a direct temperature solution method to
calculate the modi_ed e}ective thermal conductivity tensor\ by solving the temperature _eld in a unit cell with appropriate
boundary conditions\ is proposed[ This method introduces a moving frame that converts the convective!di}usion
equation in a pure conduction equation[ NavierÐStokes equations and energy equations are solved in an array of cells
and e}ective thermal conductivity is calculated from the local temperature _eld[ The dependence of the modi_ed e}ective
thermal conductivity tensor on pertinent dimensionless numbers such as Peclet number\ thermal conductivity ratio of
solid to liquid\ and the ratio of solid volume "volume fraction of the cylinders# in the unit cell is discussed[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

Nomenclature

b closure vector function
cp speci_c heat capacity
D total thermal di}usivity tensor
Dd hydrodynamic dispersion tensor
e unit vector in a Cartesian coordinate
h half height of a unit cell
I identity tensor
k thermal conductivity
ke e}ective conductivity tensor for molecular di}usivity
Kd e}ective conductivity tensor for dispersion e}ect
K modi_ed e}ective thermal conductivity tensor
Kxx modi_ed e}ective thermal conductivity along the
~ow direction
Kyy modi_ed e}ective thermal conductivity per!
pendicular to the ~ow direction
l length of a unit cell
n normal vector
P pressure
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Pe Peclet number
q heat ~ux
Re Reynolds number
S surface
Sfs interface of ~uid and solid phase
t time
T temperature
u velocity vector
uD Darcy|s velocity
upcf the reference velocity of the pure conduction frame
ðuŁ local volume averaged velocity vector
u x component of velocity
v y component of velocity
V local representative elementary volume
x coordinate vector
x\ y\ z Cartesian coordinates[

Greek symbols
a thermal di}usivity
DT imposed temperature di}erence
o volume fraction
u transformation of temperature
h viscosity
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C the quantity to be applied in volume averaging theorem
r density[

Subscripts
f ~uid phase
s solid phase
l moving reference frame or pure conduction frame[

Superscripts
g deviation
Ð average
� dimensionless[

Others
ðŁ local representative volume averaging operator
ðŁf local representative ~uid!phase volume averaging
operator
ðŁs local representative solid!phase volume averaging
operator[

0[ Introduction

In the composite manufacturing process\ the heat
transfer is an important issue[ Especially for liquid injec!
tion molding process\ such as resin transfer molding
"RTM# and structural reaction injection molding
"SRIM#\ a cold viscous resin ~ows through the preform
of reinforcing _bers placed in a closed hot mold[ The
stationary _ber bed constitutes the _brous porous media[
The thermal convection due to the ~uid motion and the
thermal conduction between the _bers\ resin and the
interface e}ect the temperature of the resin in the _brous
porous media[ The microscopic heat dispersion is
expected to e}ect the macroscopic temperature history
ð0Ł[ It is important to predict the temperature history
accurately to prevent the resin from turning into a gel
before the cavity is _lled or from curing too fast and
degrading the composite[ For this\ one needs a model that
will account for the physics of heat transfer phenomena
undergoing inside the mold that contains a network of
_bers[

Volume averaging method ð1Ł is used to describe the
macroscopic energy equation through a porous media of
stationary _ber bed[ Darcy|s velocity\ uD\ is used to
describe the macroscopic ~uid convection[ However in
porous media\ the macroscopic convective term\
uD = 9ðTŁ\ described by Darcy velocity is not su.cient to
describe the hydrodynamic e}ect on heat transfer because
of the hydrodynamic dispersion phenomena that prevail
in porous media due to the non!uniformity of the local
velocity in the pores of the _ber bed as shown in Fig[
0[ Hence if we use the Darcy|s velocity to describe the
macroscopic convective term\ we must account for the
local heat dispersion in some way[ One way is to include
this e}ect into macroscopic conductive term ð2Ł[ Practice
has converged on use of a modi_ed e}ective thermal

conductive term in the macroscopic energy equation to
describe this behavior in a {lumped| sense ð3Ł[

To explore and to predict the modi_ed e}ective ther!
mal conductivity tensor that accounts for heat dispersion
in a two!dimensional porous media\ we _rst employ the
volume averaging method ð1Ł and the concept of a unit
cell model to represent the periodic structure of _ber
performs[ In this method\ a vector function b\ which
projects the gradient of averaged volume temperature
onto the scalar function of local temperature deviation\
is used to show the existence of the modi_ed e}ective
thermal conductivity tensor[ Sahraoui and Kaviany ð4Ł
conducted two!dimensional numerical simulations of the
total thermal di}usivity tensor by using b vector based
on an order of magnitude analysis[ The total thermal
di}usivity tensor was given as D � ke:"rcp#f¦ofD

d\ where
ke is the e}ective conductivity tensor contributed by
molecular di}usivity\ and Dd is the hydrodynamic dis!
persion tensor of the ~uid[ However\ the visualization of
temperature _eld of the unit cell is still of interest since it
will provide a clear physical understanding of the heat
dispersion phenomenon[

Based on the understanding of the modi_ed e}ective
thermal conductivity tensor and the microscopic energy
equation for non!isothermal ~ow of resin in stationary
_ber bed\ we have developed a direct temperature solu!
tion method to calculate the modi_ed e}ective thermal
conductivity tensor by applying the _rst law of ther!
modynamics to the unit cell[ Our method is veri_ed for
the well known Taylor|s solution ð5Ł[ Taylor|s dispersion
theory not only provides us with an analytical solution
but also provides clues on how to solve for the micro!
scopic semi!periodic temperature _eld inside the unit cell
by selecting a moving observation frame which is tra!
veling at the mean velocity of a ~ow through the porous
media[ With selected observation frame and boundary
conditions\ we solve for the semi!periodic temperature
_eld in the unit cell[ Then\ the modi_ed e}ective con!
ductivity tensor for a _brous porous media is calculated
by using the direct temperature solution method and
from the semi!periodic temperature _eld[ Our results
agree with the experiment data ð6Ł and show the same
trend provided by ð7Ł[

We used the software package\ FIDAP6[94\ to _nd
the numerical solution[ FIDAP solves the NavierÐStokes
equations and energy equation for a ~uid\ based on the
_nite element method[ This software package allows us
to implement the user!de_ned subroutines and to simu!
late ~ow in any complex geometry and arrangement of a
_ber preform[ We focused on ~ow across a cylindrical
_ber in a square unit cell\ i[e[\ in!line cylindrical unit
cell[ Results obtained by using FIDAP were checked
by comparing numerically calculated values of modi_ed
e}ective conductivity with the simple analytical solutions
where available[ We investigate the in~uence of relevant
important dimensionless parameters such as Peclet num!
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Fig[ 0[ The representative averaged volume and the non uniform microscopic velocity of a porous medium[

ber "Pe#\ porosity\ and _ber!resin conductivity ratio on
modi_ed e}ective conductivity[

1[ Previous work

In this paper\ we will study the heat transfer of ~uid
across an aligned _ber bed at the unit cell level[ Hence\
here we shall review some important contributions that
address the issue of heat dispersion in porous media[

Taylor ð5Ł studied the dispersion in a tube\ making
appropriate assumptions based on experimental obser!
vations\ he found an analytic solution for the axial dis!
persion coe.cient which he non!dimensionalized with
respect to the ~uid molecular di}usivity\ i[e[\ Dd

xx:af\ and
showed that it was related to Pe1

f [ Aris ð8Ł further
extended Taylor|s dispersion coe.cient to a total
axial di}usion coe.cient\ Dxx:af\ that combined the
molecular di}usion and hydrodynamic dispersion e}ect[
Scheidegger ð09Ł used a stochastic model\ the random walk
model\ to obtain the dependence of the axial dispersion
coe.cient on Pe1

f for ordered porous media and Pef for
disordered porous media[ De Josselin De Jong ð00Ł
employed similar analysis as Scheidegger|s to get the heat
dispersion e}ect in disordered porous media[ In addition
to the dependence of the axial dispersion coe.cient on
Pef\ he found Pef dependence of the lateral dispersion
coe.cient Dd

yy:af[ Sa}man ð01Ł modeled the micro struc!
ture of a disordered porous media as a network of capil!
lary tubes randomly oriented at high Peclet numbers and

under steady state conditions[ He found that axial dis!
persion coe.cient was proportional to Pef ln Pef\ and the
lateral dispersion coe.cient rose as Pef increased[ Horn
ð02Ł developed a general method of moments based on
Aris|s ð8Ł formulation\ and solved for the axial dispersion
coe.cient as a function of Pef\ porosity\ and heat
capacity ratio of ~uid phase to solid phase[ Brenner ð03Ł
obtained the dispersion tensor from the moments of the
probability density of a particle position by extending
Brownian theory for the particle in a periodic unit cell[
Carbonell and Whitaker ð1Ł used the local volume aver!
aging technique to derive the macroscopic energy equa!
tion for a unit cell of porous media[ In their approach\
a vector function b was introduced\ which projects the
gradient of averaged volume temperature onto the scalar
function of local temperature deviation[ Eidsath et al[
ð04Ł employed the same technique to compute the total
di}usion coe.cient for the in!line cylinder unit cell with
thermal conductivity of solid phase ks � 9[ Their results
showed Pe0[6

f dependence for the axial total di}usion
coe.cient\ Dxx:af\ and the lateral total di}usive
coe.cient\ Dyy:af\ was almost constant[ Koch et al[ ð05Ł
derived a closure!form of expression for the dispersion
tensor for a packed bed of spherical particles[ They
assumed equal thermal conductivities and heat capacities
for the ~uid and solid phase[ Their results show the axial
total di}usion coe.cient was proportional to Pe1

f \ and
the lateral total di}usion coe.cient remained almost con!
stant[ Mei ð06Ł applied the method of homogenization in
a periodic unit cell and deduced the dispersion tensor in
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terms of the microscale ~ow inside the unit cell[ Yuan et
al[ ð07Ł employed a thick wall tube model to study heat
dispersion in porous media[ Their results show the total
axial di}usion coe.cient Dd

xx:af\ is proportional to Pe1
f [

As the thermal conductivity ratio of solid phase to ~uid
phase\ i[e[\ ks: kf\ increases\ the Dxx:af increases at low
Peclet number and decreases at high Peclet number[ The
heat capacity ratio of solid phase to ~uid phase\
"rcp#s:"rcp#f\ also in~uences the axial total di}usion
coe.cient in their study[ Zhang and Advani ð2Ł employed
the local volume averaging technique derived by Car!
bonell and Whitaker ð1Ł to compute the b\ and then
calculated the axial dispersion coe.cients on an in!line
cylinder unit cell[ Their results predict that Dd

xx:af is pro!
portional to Pe1

f [ Sahraoui and Kaviany ð4Ł used the same
local volume averaging technique to compute the total
di}usion coe.cients of an in!line cylindrical unit cell[
Their result agreed with Yuan et al[|s results ð07Ł for
the dependence of both Peclet number and conductivity
ratio[ They further showed that the lateral total di}usion
coe.cient\ Dyy:af\ remains almost constant for in!line
cylinder arrangement and increases with Peclet number
for staggered cylinder unit cell arrangement[

2[ Volume averaged energy equation and modi_ed

effective thermal conductivity tensor

In porous media\ velocity is not only non uniform in
magnitude\ but also changes direction at the pore level
"Fig[ 0#[ The porosity\ geometry and arrangement of
_bers could be extremely complex[ Hence a practical
solution is to consider the volume averaged energy equa!
tion for general porous media developed by Carbonell
and Whitaker ð1Ł[

Consider the porous media in a representative volume
V with stationary solid phase Vs and ~owing ~uid phase
Vf as shown in Fig[ 0[

The energy equations on a microscopic scale in the
~uid phase and in the solid phase are

1Tf

1t
¦9 = ufTf � 9 = af9Tf in Vf\ "0#

1Ts

1t
� 9 = as9Ts in Vs[ "1#

Note that the energy equation for solid phase is observed
in a stationary frame and hence the convection term is
zero[ The local thermal equilibrium assumption is
ðTfŁf � ðTsŁs � ðTŁ\ where the ðŁ denotes the average
value over the unit cell[ Assuming

T � ðTŁ¦T
 � ðTŁ¦b"x# = 9ðTŁ "2#

uf � ðufŁf¦u¼ f[ "3#

Note the ~uid phase average velocity ðufŁf � ðufŁ:
of � ðuŁ:of � uD:of\ where uD is Darcy|s velocity[ Here

b"x# is a vector function that relates the gradient of the
averaged volume temperature to the temperature devi!
ation[ The volume averaging theorem is

ð9CfŁ � 9ðCfŁ¦
0
VgSfs

Cfnfs dS[ "4#

Combining the local thermal equilibrium assumption
and eqns "0#Ð"4#\ we obtain the volume averaged energy
equation ð3Ł

"of "rCp#f¦os "rCp#s#
1ðTŁ

1t

¦"rCp#fðufŁ = 9ðTŁ � 9 = ""ke¦Kd# = 9ðTŁ# "5#

where we de_ne the e}ective conductivity tensor for
molecular di}usivity as

ke �"ofkf−osks#I¦
kf−ks

V gSfs

nb dS[ "6#

The e}ective conductivity tensor for dispersion e}ect is
de_ned as

Kd � −
"rCp#f

V gVf

u¼ fb dV � −
of "rCp#f

Vf gVf

u¼ fb dV[ "7#

For convenience\ we further de_ne a modi_ed e}ective
thermal conductivity tensor K � ke¦Kd\ which includes
the molecular di}usivity and dispersion e}ects[ The
modi_ed e}ective thermal conductivity tensor is inde!
pendent of ðTŁ and 9ðTŁ and is expected to be a function
of structure\ volume fraction\ conductivity ratio of solid
to ~uid phase\ Reynolds number of the ~uid\ and the
Peclet number of the ~uid[ One way to understand these
e}ects is by using the b method ð1\ 7Ł[

In this paper\ alternatively\ we will solve the modi_ed
e}ective thermal conductivity tensor by direct tem!
perature solution based on energy balance in the control
volume of a selected moving observation frame which is
derived from the local thermal equilibrium model in an
arbitrary observation frame[ The generalized local ther!
mal equilibrium model will include the convection of both
the ~uid phase and solid phase in an arbitrary observation
frame[ A characteristic velocity of the moving obser!
vation frame to eliminate the macroscopic heat con!
vection term of the macroscopic energy equation is com!
puted[ The characteristic velocity is found to be useful
for solving the microscopic temperature _eld directly[
The results from direct temperature solution do agree
with the results obtained by using the b method and local
thermal equilibrium assumption[ The visualization of
microscopic temperature _eld in a unit cell is possible by
this technique[

3[ Direct temperature solution

Let us ignore the viscous dissipation and re!write the
heat ~ux through a unit cell by using volume averaging
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method in an arbitrary frame instead of a stationary
frame[
ðqtotalŁ � ðqconvectiveŁ¦ðqconductiveŁ

�
0
V6gVf

rfcpf
ufT dV¦gVs

rscps
usT dV7

¦
0
V6−kfgVf

9T dV−ksgVs

9T dV7[ "8#

Now we assume local thermal equilibrium and substitute
uf � ðufŁf¦u¼f\ us � ðusŁs\ and T � ðTŁ¦b =9T into eqn
"8#[ By using the volume averaging theorem\ we can show
the calculation of b vector can be replaced by the cal!
culation of modi_ed e}ective thermal conductivity that
carries a physical meaning and can be readily used in
macroscopic heat transfer equation to describe the ther!
mal physical phenomena in a porous media^

ðqtotalŁ � "rfcpf
ðufŁ¦rscps

ðusŁ#ðTŁ−K =9ðTŁ[ "09#

Eqn "5# is a particular case of eqn "09# when the obser!
vation frame and the solid phase are stationary\ i[e[\
us � 9[ However\ one should note that both eqn "5# and
eqn "09# are based on the local thermal equilibrium
assumption and the approximation of the microscopic
temperature with the leading terms of Taylor|s series[
The equivalent heat ~ux of eqns "5# and "09# can be
asserted only if those assumptions are realized in the unit
cell[

When the solid is a transversely isotropic medium\
the modi_ed e}ective thermal conductivity tensor in two
dimensions can also be written as K � Kxxexex¦Kyyeyey[
Using the averaging theorem\ we can show that

ð9TŁ � ð9Tf¦9TsŁ � 9"ðTfŁ¦ðTsŁ#
� 9ðTf¦TsŁ � 9ðTŁ[ "00#

The smallest volume to which one may apply the aver!
aged energy equation is the unit cell[ After solving the
temperature _eld inside a unit cell\ one can use eqn "09#
and eqn "00# to calculate the modi_ed e}ective thermal
conductivity tensor[

Another interesting feature of eqn "09# is that we can
convert it to pure macroscopic conduction equation in a
selected observation frame\ "t0\ x0\ y0\ z0#\ which makes
rfcpf

ofðufŁf¦rscps
osðusŁs � 9[ In this selected frame\ the

steady state energy balance will be described as

ðqtotalŁ � −K =90ðTŁ\ in "t0\ x0\ y0\ z0# "01#

and the steady state macroscopic energy equation should
be governed by pure steady state conduction equation as

9 � 90 ="K =90ðTŁ#\ in "t0\ x0\ y0\ z0# "02#

which is much simpler to solve as compared to a con!
vective!di}usive equation[ We will select the frame of
reference with a velocity such that we eliminate the con!
vective term and solve only eqn "02#[ In most porous
media ~ows\ the solid phase is stationary\ and if we de_ne
the x direction along the direction of Darcy|s velocity\

uD � ð ufŁ � uDex\ then to solve the equation in the selec!
ted frame\ "t0\ x0\ y0\ z0#\ which should move with a
constant velocity upcf as

upcf �
"rcp#fuD

"rcp#fof¦"rcp#sos

ex �
uD

of¦os ð"rcp#s:"rcp#fŁ
ex[

"03#

This frame from now on will be referred to as pure con!
duction frame or moving reference frame\ "t0\ x0\ y0\ z0#[
One can _nd out that the velocity of pure conduction
frame is identically the same as the thermal pulse velocity
found by Carbonell and Whitaker ð1Ł[

3[0[ Veri_cation

In this section we will verify our approach and results
for the modi_ed e}ective thermal conductivity by com!
paring them with reported analytic solutions[ Here we
employ the Taylor ð5Ł dispersion theory of ~ow between
two in_nite parallel plates as shown in Fig[ 1[

The 1D energy equation of the ~uid for the fully
developed ~ow is

1T
1t

¦
2
1
u¹ 00−

y1

h11
1T
1x

� af0
11T

1x1
¦

11T

1y11 "04#

where u¹ is the magnitude of the average ~uid velocity[
The initial and boundary conditions are

T"9\ x � x9\ y# � Ti and T"9\ x9\ y# � To

T"t\ �\ y# � Ti and
1T
1y

"t\ x\ 9# �
1T
1y

"t\ x\ 2h# � 9[

"05#

Taylor described this problem in the observation frame
moving with mean velocity\ i[e[\ x0 � x−u¹t\ y0 � y:h\
t0 � t[ He further assumed 1T:1t0 ½ 9 + 1T:1x0 ½ const
after the elapsed time and neglected the axial conduction
"see Fig[ 1"c##[ Using the above assumption and with
u � T−Ti\ we can solve the temperature _eld and then
calculate the averaged convective heat ~ux across the
plates perpendicular to x0 as

ðqconvectiveŁ
"rcp#f

� −
0

109
Pe1af

1u¹

1x0

� −Dd
xx

1u¹

1x0

"06#

where Peclet number Pe � Pr = Re � u¹ "1h#:af is the rela!
tive strength of convection to molecular di}usion\ and u¹
is the average of u for the cross section perpendicular to
x0[ We can non!dimensionalize the dispersion coe.cient
with respect to molecular di}usivity as
Dd

xx:af � Pe1:109[ The total e}ective di}usivity ð8Ł can
be written as

Dxx

af

� 0¦
0

109
Pe1 � 0¦

Dd
xx

af

[ "07#

To verify our approach to calculate the modi_ed e}ective
conductivity tensor\ one can use eqn "03# to verify that
upcf �u¹[ Then using eqns "09#Ð"01# and eqn "06#\ one gets
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Fig[ 1[ Hydrodynamic dispersion in a fully developed ~ow between two parallel plates] "a# initial temperature _eld^ "b# pure hyd!
rodynamic dispersion^ before the developed time^ "c# molecular dispersion ¦ pure hydrodynamic dispersion^ after the elapsed time
"t Ł 0#[

Kxx �
ðqtotalŁ

−
1u

1x0

�
−

0
109

Pe1rcpaf

1u¹

1x0

−kf

1u¹

1x0

1u¹

1x0

� 0
0

109
Pe1¦01kf "08#

and non!dimensionalizing the modi_ed e}ective axial
thermal conductivity based on the thermal conductivity
of the ~uid phase results in

K�xx �
Kxx

kf

� 0¦
0

109
Pe1 � 0¦

Dd
xx

af

�
Dxx

af

[ "19#

Equation "19# is identical to eqn "07#[ This will allow us
to directly _nd the modi_ed e}ective conductivity and
circumvent the calculations of the b _eld[

Here\ we notice that the observation frame selected
by Taylor corresponds to our eqn "03#[ If we select an
arbitrary plane perpendicular to x0 as our unit cell\ Tay!
lor|s quasi!steady state and constant temperature gradi!
ent assumptions\ reduce to the pure macroscopic con!
duction phenomenon\ described by eqn "01# and eqn
"02#[ The microscopic temperature _eld of the unit cell
and the particular solution of the macroscopic energy
equation are consistent with the laws of energy balance[

We have derived and veri_ed the direct temperature
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solution method\ which is based on fundamental math!
ematics and with clear physical meaning[ The method can
be used to _nd the modi_ed e}ective thermal conductivity
that re~ects the dispersive e}ect if we have the periodic
velocity and semi!periodic temperature _eld applied to
the unit cell representing the porous media[ Since the
direct temperature solution method is based on the analy!
sis of macroscopic energy equation and the physics of
energy balance\ it won|t depend on the way we compute
the b vector[ The direct temperature solution method is
similar to the experimental method which determines the
modi_ed e}ective thermal conductivity tensor from the
physics and the given form of macroscopic energy equa!
tion[ The macroscopic energy equation used in exper!
imental analysis should be constructed on the basis of
physical laws such as continuity\ energy balance\ and also
frame independence[ Most of the researchers construct
the macroscopic energy equations in the stationary frame
because of the simplicity\ however\ some generalized
information such as use of the pure conduction frame
can be lost[ Use of a moving observation frame simpli_es
the analysis and allows one to determine e}ective thermal
conductivity[ We initiate the process by de_ning a unit
cell along with appropriate boundary conditions to create
the periodic velocity and semi!periodic temperature _eld
inside the unit cells in the following section[

4[ The direct temperature solution of periodic in line

unit cells

We consider a periodic _ber arrangement\ in which
each _ber is a circular cylinder[ The ~ow is perpendicular
to the _ber and is two dimensional as the _ber length is
usually much longer than its diameter[ The schematic of
the unit cell with in!line circular cylinder arrangement is
shown in Fig[ 2[

In this section\ we will discuss the boundary conditions
and unit cell geometry used to create the semi!periodic
temperature _eld to solve for Kxx and Kyy[ Based on eqn
"09#\ eqn "03#\ and Taylor|s dispersion theory\ we know
that it will be more e.cient to solve for Kxx in a moving
frame[ It is also known that applying a constant tem!

Fig[ 2[ In!line unit cell in a two!dimensional periodic architecture of a _brous porous medium[

perature drop perpendicular to the direction of fully
developed ~ow between two parallel plates will give us a
fully developed temperature pro_le[ We will exploit this
to obtain a reasonable model to solve for Kyy\ which we
will discuss separately[

4[0[ Modi_ed effective thermal conductivity alon` the ~ow
direction "Kxx#

To solve for Kxx\ we de_ne two frames to observe the
velocity and temperature _eld inside the unit cells\ one is
the stationary frame\ "x\ y\ t#\ and the other is the pure
conduction frame\ "x0\ y0\ t0#\ moving with constant
velocity\ upcf � upcfex\ as described by eqn "03#[ The
relation between the two frames is x0 � x−upcf = t\ y0 � y\
t0 � t[ The governing equations for the stationary frame\
"x\ y\ t# are

us � 9

9 = uf � 9

rf0
1uf

1t
¦uf = 9uf1� −9Pf¦h91uf

rcp0
1T
1t

¦u =9T1� k91T

J

G

G

f

F

G

G

j

in "x\ y\ t#

"10#

where the energy equation applies to both the ~uid and
the solid phase[ And using the chain rule and material
invariant principles\ we can cast the governing equations
for the moving frame\ "x0\ y0\ t0#\ similar to eqn "10#
except us � −upcf[

Based on the understanding of Taylor|s dispersion\ we
make the following assumptions\

1uf

1t
� 9\ in "x\ y\ t#

1T
1t0

½ 9\ in "x0\ y0\ t0#[ "11#

Note the quasi!steady state assumption of temperature
in the moving frame is based on the asymptotic behavior
of large elapsed time and dimensionless analysis[ Using
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chain rule and eqn "11#\ we recast the motion equations
in the pure conduction frame as

rf0upcf =
1uf

1x0

¦uf = 9uf1� −9Pf¦h91uf\

for the fluid phase in "x0\ y0\ t0# "12#

us � −upcf = ex0
\ for the solid phase in "x0\ y0\ t0# "13#

and the energy equations become

"rcp#f = uf = 9Tf � kf91Tf\

for the fluid phase in "x0\ y0\ t0# "14#

−"rcp#supcfex0
= 9Ts � ks91Ts\

for the solid phase in "x0\ y0\ t0#[ "15#

At the interface of the solid and the ~uid phase\ we have
the no!slip velocity boundary condition and equal heat
~ux boundary condition in the stationary frame "x\ y\ t#
given by

uf � us � 9

n = ks9Ts � n = kf9Tf\ along the interface\ in "x\ y\ t# "16#

and for pure conduction frame "x0\ y0\ t0# these boundary
conditions become

uf � us � −upcfex0
n = ks9Ts � n = kf9Tf\

along the interface\ in "x0\ y0\ t0# "17#

note the interface is moving in the pure conduction frame
and has the same velocity as the solid phase in the pure
conduction frame\ i[e[\ relative velocity to the pure con!
duction frame[

Now we consider the other boundary conditions "BCs#
for velocity[ First\ we will discuss the velocity _eld BCs
in the stationary frame "x\ y\ t#\ since it had reached
steady state in the stationary frame[ Then we can transfer
them to the pure conduction frame\ "x0\ y0\ t0#\ simply by
eliminating the frame velocity upcf[

The fully developed velocity pro_le can be created by
the ~ow through a series of precursory unit cells as shown
in Fig[ 3\ with the following boundary conditions\

1u
1y

� 9 and v � 9\

at symmetry line or center line in "x\ y\ t# "18#

1u
1x

� 9 and v � 9\ at outflow in "x\ y\ t#[ "29#

We need to input an in~ow velocity pro_le to keep the
total ~ow rate equal to the product of Darcy|s velocity
multiplied by the height of the unit cell\ i[e[\ uD = 1h[ With
respect to eqn "18#\ we assume

uguessed"y#
uD

�
−139

6 0
y
h1

3

¦
019
6 0

y
h1

1

and v � 9\ at inflow in "x\ y\ t# "20#

where h is the height of the unit cell[ We should note
that this assumption is helpful in approaching the fully
developed velocity pro_le at the out~ow of the precursory
unit cells by using fewer precursory unit cells[ Other
guesses for in~ow pro_le may cost more precursory unit
cells but should lead to the same result[ Note one can
transform the velocity boundary conditions from station!
ary frame "x\ y\ t# to the pure conduction frame "x0\ y0\
t0# simply by subtracting the e}ect of upcf[

For periodic structures such as our unit cell\ we have
the following description of semi!periodic temperature
due to the volume averaged temperature gradient\

0
1hg

h

−h

ðT"x0¦l\ y0#

−T"x0\ y0#Ł dy0 �
1ðTŁ
1x0

= l\ in "x0\ y0\ t0# "21#

where 1h is the height of the unit cell\ and l is the length
of the unit cell[ Di}erentiating equation "21# and using
eqn "02#\ we get

g
h

−h$
1T
1x0

"x0¦l\ y0#

−
1T
1x0

"x0\ y0#% dy0 � 9\ in "x0\ y0\ t0#[ "22#

Since the structure of the unit cell is periodic\ we expect
the temperature gradient of the unit cell to be the same
at each periodic location and the temperature pro_le to
be self similar[ We assume the semi!periodic temperature
conditions are given by

T"x0¦l\ y0# � T"x0\ y0#¦l
1ðTŁ
1x0

1T
1x0

"x0¦l\ y0# �
1T
1x0

"x0\ y0#\ in "x0\ y0\ t0# "23#

where "x0\ y0# can be any arbitrary position\ and

1T
1y0

� 9\ at symmetry line or center line in "x0\ y0\ t0#[

"24#

We complete our system as summarized in Figs 3 and
4[ However\ since this system is developed under a lot of
assumptions\ it is necessary to understand the capability
of our system[ To evaluate our system\ we check the
energy balance of the unit cell[ When "rcp#s:"rcp#f � 0\
the energy of this unit cell balances exactly[ And some
accuracy loss is found when "rcp#s:"rcp#f � 0[ The accu!
racy loss may come from those assumptions used to
approach our system\ for example\ the local thermal equi!
librium assumption\ the quasi!steady state assumption\
and the semi!periodic temperature boundary conditions[
To improve the accuracy\ more advanced and generalized
theory may be needed in the future[ Here\ we will only
use "rcp#s:"rcp#f � 0 for our case study[ Before solving
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Fig[ 3[ Precursory unit cells and boundary conditions to create the fully developed velocity pro_le for the target unit cell "described in
stationary frame#[

Fig[ 4[ Boundary conditions for a series of non!isothermal unit cells to solve for Kxx "described in the pure conduction frame#[

the cell problem by FIDAP\ we select our parameters as
the ones for a typical resin transfer molding process\ i[e[\
the conductivities of ~uid and of solid are of the same
order and setting "rcp#s:"rcp#f � 0[ For numerical simu!
lations\ we apply uniform heat ~ux through the cross
sections of in~ow and out~ow for a series of unit cells\

and let the temperature pro_le develop through the unit
cells[ For our simulation\ i[e[\ in!line unit cell\ we use
two precursory non!isothermal unit cells\ one target non!
isothermal unit cell\ and one post non!isothermal unit
cell[ Figure 4 shows the unit cells with temperature
boundary conditions[ The numerical results show that
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our approach with the semi!periodic temperature bound!
ary conditions\ i[e[\ the temperature pro_les at the inlet
and outlet of the target non!isothermal unit cell are simi!
lar to each other in the moving reference frame[ Note
here\ instead of applying eqn "23# directly to the cell
problem\ we let the temperature pro_le develop through
a series of unit cells naturally[ The temperature pro_le
solved by FIDAP will approach the semi!periodic tem!
perature conditions\ i[e[\ eqn "23#[

For convenience\ we further use the following dimen!
sionless variables for the moving frame "x0\ y0\ t0#

u� � u:uD\ v� � v:uD

x�0 � x0:l\ y�0 � y0:l

P� �
P

rfu
1
D

\ h� �
h

rfu
l
D

�
0
Re

r�f � r�s � 0

k�f � 0\ k�s �
ks

kf

c�pf
�

uDl
af

� Pef\ c�ps
�

"rcp#suDl
kf

� Pef =
"rcp#s

"rcp#f

� Pef[

"25#

Note that the solid is stationary\ and without any con!
tribution from inertial force[ For convenience\ we set
r�s � r�f � 0[ Hence\ we expect Kxx:kf � K�xx "Re\ Pef\ os\

Fig[ 5[ Boundary conditions for the non!isothermal target unit cell to solve for Kyy "described in the stationary frame#[

structure\ ks:kf\ "rcp#s:"rcp#f#[ One can use eqns "09#Ð"01#
to calculate Kxx after solving the semi!periodic tem!
perature _eld of the non!isothermal unit cell[

4[1[ Modi_ed effective thermal conductivity perpendicular
to the ~ow direction "Kyy#

To achieve the periodic temperature _eld to solve for
Kyy\ we can apply a constant temperature drop along the
top and bottom symmetry lines of the unit cell in the
stationary frame[ The steady state governing equations
and the interface BCs are eqns "10# and "16# respectively[
The velocity BCs are eqns "18#Ð"20#[ To solve for Kyy\
the periodic temperature boundary conditions of the
in~ow and out~ow are

T"x¦l\ y# � T"x\ y#

1T
1x

"x¦l\ y# �
1T
1x

"x\ y#[ "26#

And at the symmetry line and the center line we have

T �
DT
1

\ along the top symmetry line "27#

T � 9\ along the center line[ "28#

The BCs for the non!isothermal target unit cell to solve
for Kyy are summarized in Fig[ 5[ Here\ we use the same
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dimensionless variables as shown in eqn "25# and add
T� �T:DT[ Since "rcp#s makes no contribution to this
unit cell problem\ we expect Kyy:kf to be a function of
K�yy "Re\ Pef\ os\ structure\ ks:kf# from our analysis[

5[ Numerical solution

We employed FIDAP6[94 to obtain the numerical
solution of the ~ow _eld and the temperature distribution
inside the unit cells with appropriate boundary
conditions[ FIDAP\ Fluid Dynamics Analysis Package\
is a general purpose computer program that uses the
_nite element method to solve the NavierÐStokes equa!
tions and the energy equation inside a given geometry[
After the solution of the velocity _eld and the tem!
perature _eld is obtained\ FIPOST\ i[e[\ post process
module of FIDAP\ is used to display streamlines\ tem!
perature contours etc[ and also to calculate the heat ~ux
values at the boundaries as well as the volume averaged
temperature gradient of the target unit cell[

With FIDAP we solved the system of steady state\
laminar\ nonlinear NavierÐStokes equations and the
energy equation[ The extra term in the motion equation\
eqn "12#\ observed in the pure conduction frame "x0\ y0\
t0# was supplied by a subroutine as body force term in
the NavierÐStokes equations[ The motion equations were
solved in the ~uid region of the unit cell and the energy
equation was solved for both the solid and the ~uid[ The
velocity of solid phase is speci_ed as the relative velocity
to the observation frame[ The no!slip boundary con!
ditions were speci_ed at the ~uid and the solid interface[
We provide an initial guess for the velocity pro_le\ eqn
"20#\ at the in~ow boundary of the precursory unit cells
to approach the fully developed ~ow "Fig[ 3#[ The BCs
shown in Figs 4 and 5 are applied on the non!isothermal
unit cells to solve for the non!dimensional temperature
_eld[ The material properties used as input are in the
non!dimensional system as shown in eqn "25#[

After solving for the temperature pro_le inside the
target unit cell\ we use eqns "09#Ð"01# to calculate the
modi_ed e}ective thermal conductivity tensor in dimen!
sionless form[

5[0[ Veri_cation

We compared the analytic solutions of the previous
cases with the numerical solutions obtained from FIDAP[
For Taylor|s dispersion analysis\ using 29×099 elements
to mesh a thin plate "9[0×1# perpendicular to x0 axis and
for Pe � 099\ we found that K�xx � 36[50769\ with the
error less than 1[94E!4[

6[ Results and discussion

A parametric study was carried out to investigate the
in~uence of various dimensionless parameters on e}ec!

tive thermal conductivity in the in!line unit cell[ The
inertial e}ect in RTM process is expected to be very weak
as Re ³ 0\ so we don|t vary Reynolds number in this
numerical study[ We select Re � 9[4\ Pef � 9½ 599\
os � 9[0\ 9[4\ ks:kf � 9[0\ 0\ 09\ "rcp#s:"rcp#f � 0 as the
parameters for most of the cases[ These parameters are
typical of the RTM process ð3Ł[ Some typical temperature
distributions in a unit cell are shown in Fig[ 6[

6[0[ The dimensionless modi_ed effective thermal con!
ductivity alon` the ~ow direction "Kxx:kf#

Since the convective heat transfer is strongly dependent
on Pef\ we expect Kxx:kf to be dominated by heat con!
duction at Pef � 9\ and by heat convection as Pef

increases[ Based on this qualitative understanding of heat
dispersion inside the unit cell\ we try to explain the in~u!
ence of each parameter on Kxx:kf[

+ Peclet number of the ~uid "Pef#] As most reported
studies in the literature\ our results in Figs 7 and 8
show a strong dependence on Pe1

f [ Figure 7 shows that
our numerical results agree with the experimental
results done by Gunn and Pryce ð6Ł[ If we use power
law to _t our results\ the Pe0[57

f ½ Pe0[74
f dependence at

high Peclet number is obtained[ Our power law trend
study agrees well with the reported works ð7\ 04Ł[

+ Thermal conductivity ratio of the solid and the ~uid
"ks:kf#] Fig[ 09 depicts the e}ect of ks:kf on Kxx:kf[ At
high Pef\ the modi_ed e}ective thermal conductivity
Kxx:kf increases as ks:kf decreases[ The opposite trend
is found at low Pef[ However\ the ratio of the modi_ed
e}ective thermal conductivities of two unit cells with
di}erent ks:kf approaches to a constant value as Pef

approaches in_nity[ Similar results were reported by
Sahraoui and Kaviany ð4Ł and Yuan et al[ ð07Ł[

+ Volume fraction of solid "os#] The dependence of vol!
ume fraction should be related with other parameters\
since it does not explicitly show up in the governing
equations[ The os in~uences the geometry and the vel!
ocity of the reference moving frame "pure conduction
frame# if "rcp#s:"rcp#f � 0[ In this paper\ we set
"rcp#s:"rcp#f � 0\ which deters us from relating the
e}ect of os and "rcp#s:"rcp#f on Kxx:kf[ The local velocity
deviation of the ~uid and the surface of the interface
of the solid increase as os increases and provides a
positive contribution to the heat convection[ Our
results show the Kxx:kf increases as os especially at high
Pef[ At low Pef\ the contribution of os is positive if
ks:kf − 0[

6[1[ The dimensionless modi_ed effective thermal con!
ductivity perpendicular to ~ow direction "Kyy:kf#

In general\ the molecular di}usivity is more important
than the hydrodynamic dispersion for Kyy:kf\ but the



K[!T[ Hsiao\ S[G[ Advani:Int[ J[ Heat Mass Transfer 31 "0888# 0126Ð01430137

Fig[ 6[ The microscopic temperature contours in a unit cell] left side\ the gradient of volume averaged temperature is in the ~ow
direction^ right side\ the transverse gradient of volume averaged temperature[ Note the in!line _brous unit cell has the conductivity
ratio of 09\ the heat capacity ratio of 0\ and the volume fraction of _bers of 49)[
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Fig[ 7[ The modi_ed e}ective thermal conductivity along the ~ow direction vs Peclet number "solid volume fraction of 49)\ heat
capacity ratio of 0#[
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Fig[ 8[ The modi_ed e}ective thermal conductivity along the ~ow direction vs Peclet number "solid volume fraction of 09)\ heat capacity
ratio of 0#[
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Fig[ 09[ The e}ect of ks:kf on Kxx:kf "solid volume fraction of 49)\ heat capacity ratio of 0#[

error may be up to 19) if we neglect the hydrodynamic
dispersion e}ect[ These results are shown in Figs 00 and
01[

+ When Peclet number increases\ the e}ect of heat con!
vection grows[ But the increasing contribution by heat
convection is small because only very small tem!
perature gradient along the local ~ow direction is
allowed to occur inside an in!line unit cell with imposed
volume averaged temperature gradient perpendicular
to the Darcy|s ~ow direction[

+ The os and ks:kf are key factors for Kyy:kf since they
dominate the conduction heat transfer[ However\ the
results do not agree with the mixing theory\
K�yy � ofk�f¦osk�s\ because of the geometry\ and arrange!
ment can lead to complex heat conduction patterns[ If
one does use the mixing theory one should realize their
limitations[

7[ Conclusion

We used the unit cell and volume averaging theorem
based on microscope energy balance concept to develop
the direct temperature solution method to solve for the
modi_ed e}ective thermal conductivity tensor as in~u!
enced by the unit cell structure\ Peclet number of the
~uid\ volume fraction of the solid\ thermal conductivity
ratio of the solid and the ~uid[ This method simpli_es the
calculations by introducing a moving frame to convert
the convective!di}usive energy equation to a pure con!
duction equation[ The modi_ed e}ective thermal con!
ductivity tensor can help us to analyze the temperature
history of a non!isothermal ~uid ~owing in a porous
media[ Especially for composite processing techniques
such as resin transfer molding "RTM#\ the temperature
is an important issue[
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Fig[ 00[ The modi_ed e}ective thermal conductivity perpendicular to the ~ow direction vs Peclet number "solid volume fraction of
49)#[

The direct temperature solution method|s main advan!
tages are that one can physically relate temperature to
the thermal conductivity concept and visualize the micro!
scopic temperature _eld in a unit cell[ The unit cell
approach with "rcp#s:"rcp#f � 0 with proposed conditions
is consistent with law of energy balance and has a unique
solution[ It is possible to handle more than one solid
phase and ~uid phase or even with a moving solid phase
by this method[ Based on the understanding of the physi!
cal quantity derived from simple mathematics\ upcf\ ðqŁ\
and 9ðTŁ we can explain and predict the trend of the
modi_ed e}ective thermal conductivity tensor more
e}ectively[

Although the direct temperature solution allows for
clear physical meaning and the visualization of micro!
scopic temperature _eld inside the unit cell\ it is still
unable to predict the e}ect of "rcp#s:"rcp#f[ This will be a
topic of future study[
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Fig[ 01[ The modi_ed e}ective thermal conductivity perpendicular to the ~ow direction vs Peclet number "solid volume fraction of
09)#[
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